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Unsteady tube flow over an expansion 
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Unsteady flow in a circular conduit with a smooth expansion is studied in detail by 
numerical integration of the equation of motion in the axisymmetric approximation. 
The values of governing parameters are chosen to be relevant to medical problems, and 
the geometry corresponds to a scenario of post-surgical conditions. The flow 
determined by an oscillatory volume is characterized by a sequence of vortex rings 
moving in the expanded part of the tube. The development of wall shear stress is 
governed by the separated translating vorticity which induces an evolving band of large 
intensity for about a complete oscillation cycle. This influences the dynamics of 
unsteady separation whose space-time development has revealed features of some 
generality which have been classified. The time variation of the pressure jump is 
dominated by inertial effects. The dependence of the details of the flow on the 
dimensionless parameters has been investigated systematically. The results obtained 
here have been compared with experimental and numerical studies of similar problems, 
similarities have been pointed out and differences discussed. Finally, the relevance of 
these results to physiological applications has been quantified by simulating the flow 
induced by a pulsatile flow rate. 

1. Introduction 
The understanding of unsteady motion in close conduits is currently receiving 

considerable attention because of its interest in many branches of engineering and in 
environment-related subjects including, in particular, biomechanics. In addition to the 
practical interest, previous investigations have shown how unsteadiness can lead to 
complex phenomena, even in simple external conditions, which are of intrinsic 
theoretical importance. 

The key feature is the nonlinear behaviour of the separated vorticity. Once a vortex 
is separated it drastically changes the otherwise linear (in a loose sense) dynamics, 
modifies the boundary layer evolution and its separation, and eventually the whole 
flow. This phenomenology is equally present in both internal and external flows in 
similar basic ways even though its nonlinearity makes comparison possible only among 
very similar conditions. 

The basic mechanics of vortex-induced boundary layer separation has been explored 
in several detailed studies (see, as recent examples, Ersoy & Walker 1987; Peridier, 
Smith & Walker 1991; Pedrizzetti 1992; and references therein) which are focused on 
the unsteady structure of the boundary layer up to separation. In external flows, rich 
dynamical patterns have been uncovered in geometrically simple cases like a two- 
dimensional oscillatory flow around a circular cylinder (Tatsuno & Beannan 1990 ; 
Justensen 1991 ; Nakano & Rockwell 1994; and references therein) and, more recently, 
important nonlinearities have been described for axisymmetric oscillating flow over a 
sphere (Mei & Adrian 1992; Chang & Maxey 1994). Still in external flows, oscillations 



90 G. Pedrizzetti 

over a wavy wall (Blondeaux & Vittori 1991a) have been shown to be governed by the 
dynamics of separated vorticity. 

The present work deals with the unsteady laminar flow inside a circular tube with a 
smooth expansion. The problem has relevance in many technical applications, and this 
study has been stimukated by discussions with the cardiovascular surgery community. 
Detailed description of the flow field can help the search for an explanation, in terms of 
incompressible fluid dynamics over rigid walls, of the post-surgical complications 
occurring in some carotid operations. 

The study of oscillating laminar flow over an expansion has developed significantly 
in the last decade. The greater part of these analyses deals with sudden expansions in 
the form of a step but the global behaviour, as will be shown below, does not differ 
drastically from this until a smooth expansion is able to produce a significant separated 
flow. The present work considers an axisymmetric approximation of the flow whereas 
most studies have dealt with two-dimensional models (Sobey 1985; Tutty & Pedley 
1993). These studies found the development of a train of waves, which can be defined 
as vortex waves, downstream of the step. They are related to the deflection of the 
oncoming vorticity which causes secondary separation alternating on the two opposite 
walls. The length and intensity of the wave region is related to the various flow 
parameters (Tutty & Pedley 1993); nevertheless this phenomenon appears quite general 
and has been found in different conditions such as pulsatile flow over a partially 
obstructed channel (Tutty 1992), and in channel flows perturbed by a moving 
indentation (Pedley & Stephanoff 1985; Ralph & Pedley 1988, 1989). 

Oscillatory axisymmetric flow was studied numerically and experimentally by Ralph 
(1986, 1988) for the case of wavy-walled tubes. In that case, the flow development 
depends on the longitudinal length scale given by the wall- non-uniformity wavelength 
which interacts with the flow oscillation longitudinal length inducing resonance when 
these are comparable (Ralph 1986). On the other hand, in the present case no external 
length scale can interact with the oscillation amplitude. 

The principal aim of the present work is to provide a detailed analysis of the flow 
through an expansion in a circular vessel. The study is carried out by numerical 
integration of the Navier-Stokes equation in the axisymmetric approximation. Even 
though this study is principally theoretical, it was stimulated by the hope of contributing 
to understanding some situations of the post-surgical carotid fluid dynamical state. For 
this reason, the choice of the expansion shape has been chosen to be that of an operated 
human carotid; also the value and the variation of the flow parameters have been 
chosen in similar way. Nevertheless many differences with the actual problem remain 
and the problem is strongly idealized to permit an easier theoretical investigation. 

In $2 the fluid dynamical problem is formulated and in $ 3  the numerical technique 
is presented. The flow resulting from an imposed oscillatory flow rate is analysed in $4 
for a reference set of parameters value, and in $ 5  the influence of variations of the 
parameters is explored. In $ 6 the flow rate is assumed as pulsatile with the shape of the 
pulsation taken from medical measurements, and the results are compared with the 
purely oscillatory case. Discussions are developed through the paper as results are 
reported; a concluding discussion is reported in $7. 

2. Mathematical definition of the physical problem 
Consider a tube with rectilinear axis and circular cross-section whose radius varies 

along the axis, and an incompressible viscous fluid, with density p and kinematic 
viscosity v, moving inside it transporting an instantaneous volume flow rate which is 
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periodic in time with period T. Call R, the value of the radius of the tube infinitely far 
upstream where the section becomes uniform, and call U, the maximum value, in the 
period, of the velocity averaged over the section of radius R,. Indicating with an 
asterisk the dimensional variables, the flow rate and the pipe radius are given by 

where x* is a coordinate coincident with the tube axis, and t* is the time. 
We choose the period T and the radius R, as the units of time and length, 

respectively. The dimensionless radius of the tube is given by R(x), and the 
dimensionless mean velocity infinitely far upstream is given by 

where K, is the Keulegan-Carpenter number defined as 

this is used in preference to the Strouhal number which is defined as its inverse. 
Assume the duct axis to be the x-axis of a cylindrical system of coordinates {x, r, 8) ;  

the approximation of axial symmetry makes the flow independent of the &coordinate. 
The governing equations are the axisymmetric form of the Navier-Stokes equations 
which are written in the vorticity-streamfunction formulation as 

Q*(t*) = T~RE U,f(t*/T),  R*(x*) = R,R(x*/R,), (1) 

U(t> = KC.f(tL (2) 

K,  = U,T/R,; (3) 

(4) 1 ao ia+rc?o W a $  1 ( a 2 W  (:'W 1 a W  W -+ +--=- _+-+ 
at r 2r ax r ax ar r2 ax a2 ax' are r ar r2 ' 

where ~ ( x ,  r, t )  is the azimuthal vorticity and $(x, r, t )  is the Stokes streamfunction; the 
parameter a2 is the inverse of the dimensionless viscosity, defined as 

Ri 
vT' 

= - 

and is often referred as the Stokes number (a is also known as the Womersley number). 
The vorticity and streamfunction are related by the Poisson equation 

the velocity field, automatically satisfying the continuity equation, can be computed 
from the streamfunction (Batchelor 1967). 

Equations (4) and (6) must be completed with boundary conditions. Infinitely far 
upstream and downstream, where the tube section tends to be uniform, the flow is 
assumed to be uniform as well. On the axis of the duct, r = 0, the boundary conditions 
are given by symmetry considerations, resulting in 

w = O ,  $ = O  at r = 0 .  (7) 
At the wall of the tube the velocity vector must vanish. A zero value for the normal 

velocity implies that the streamfunction is constant along the wall and is proportional 
to the instantaneous discharge flowing in the tube (Batchelor 1967). The other 
condition of no tangential velocity gives the further constraint that the first-order 
normal derivative of the streamfunction and the second-order mixed derivative are 
zero. These, with the aid of equation (6) ,  specify the value of the wall vorticity. The 
boundary conditions at the wall can be better expressed by choosing a system of 
coordinates where the wall coincides with a constant coordinate curve. 

We apply a shearing coordinate transformation (Eiseman 1985; Ralph 1986) 
replacing the r-coordinate with a new z-coordinate by defining 

r = zR(x); (8) 
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FIGURE 1. Sketch of the tube geometry (dimensionless). 

the new system of coordinates (x,z) is non-orthogonal and is well suited only to a 
slowly varying boundary (a suggested upper limited is 60"); on the other hand it has 
a wide generality and its use can also be extended to boundaries given only numerically 
and so to evolving boundaries. The Poisson equation (6) is now written as 

and the equation of motion (4) can be expressed, formally, in the manner 

(9) 

(10) 
2w 1 
c?t a 
- = -d(o,pk)-rn(O,pk)+--L~(U). 

where the operators 4, X ,  9 represent the Jacobian term, the additional nonlinear 
term related to axial symmetry, and the diffusive term respectively. These are given by 

The new coordinates permit the easier introduction of the. boundary conditions at 
z = 1 which become 

$(x,z = 1, t )  = fK&), (12) 

The physical problem is determined by the numerical values of the dimensionless 
parameters K, and u2, and by the shape of the functionsAf(t) and R(x-). These quantities 
have been determined by referring to the post-surgical carotid fluid d ynamical state. By 
fitting a relevant number of actual measurements (about 15), it has been found that the 
wall profile 

(14) R(x)  = 1 +- 1 +tanh- 
2 Y 3 

is a one-parameter family which represents a good approximation of real situations, 
where the parameter S is, typically, around unity. A sketch of the typical geometry is 
given in figure 1. The flow rate is assumed sinusoidal 

. f i r )  = sin(2m), ( 1  5 )  
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because of its theoretical importance in the understanding of unsteady flows; in 
86 a different, pulsatile, unsteadiness will be considered for completeness. The 
Keulegan-Carpenter number ranges approximately from 20 to 100, and the 
Stokes number from 2 to 15. A reference case, corresponding to K, = 50, a' = 6 , 6  = 1, 
will be analysed in detail first, then the parameters will be varied around this reference 
set and the various results compared. 

3. Numerical method 
The first step in building a numerical model is given by the definition of a finite 

computational grid to be superimposed over the physical domain. The present problem 
is dominated by the vorticity separated from the 
resolution is required close to the wall. For this reason 
z-axis by defining a new coordinate [ by 

where a is a stretching parameter. On the other hand, 

boundary layer and a higher 
we introduce a stretching of the 

the x-domain must extend very 
far from the expansion in both directions where the outlet and inlet boundary 
conditions will be specified; however, the flow is expected to become smoother far from 
the expansion and the resolution necessary near the expansion is substantially more 
refined than far from it. We thus also introduce stretching of the x-axis by using the 
new coordinate 7 defined by 

x = b tanh-l(y) + x,. (17) 

In the new system of coordinates {y,Q a uniformly spaced rectangular grid is 
superimposed on the (- I ,  1) x [0, I]  domain, Equations of motion are made discrete 
over such a grid by using centred second-order finite differences. At the two ends of the 
y-axis in the computational domain a simplified version of the equations is considered 
where only the second-order ?-derivatives are set to zero. At the symmetry axis, < = 0, 
and at the wall, g = 1, conditions (7), (12), (13) hold. The right-hand side of (13) is 
evaluated by the first-order scheme discussed by Roache (1972). A second-order 
approximation has also been tested, giving no appreciable difference ; the accuracy of 
the two methods is the same if, by symmetry considerations, the vanishing of odd 
derivatives of the streamfunction normal to the wall is assumed. The grid refinement 
near the wall introduced by (16) ensures a small truncation error. The independence of 
results from truncation is verified in the next section. 

The nonlinear Jacobian term $(o, $) of the equation of motion is made discrete 
using the dealiased Arakawa (1966) scheme which guarantees the conservation of 
energy, circulation, and enstrophy (in unbounded two-dimensional flows) in the limit 
of vanishing viscosity. The equation of motion is integrated in time using the low- 
storage third-order Runge-Kutta scheme (Williamson 1980); the time step is chosen in 
order to guarantee the convective and diffusive stability conditions (Fletcher 1988). 

The major time-consuming step in the integration procedure is the solution of the 
Poisson equation which corresponds to solving, three times per time step, a ( N ,  x N,)2 
linear system, where N ,  and N ,  are the number of grid points in the longitudinal and 
radial directions respectively. This linear system is, with the present choice of 
coordinates, made of nine diagonals, diagonal-dominant and non-symmetric. The 
solution is obtained by the bi-conjugate gradient-stabilized method (van der Vorst 
1992), preconditioned with an incomplete LU decomposition (Meijerink & van der 
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Vorst 1981). This technique is simple to implement and has very rapid convergence 
characteristics even in stiff problems (Pedrizzetti & Novikov 1994). It leads, in the 
present application, to a computation complexity less than approximately (N,  x N,)2.5 
using convergence tolerance comparable with the machine precision. The whole code 
is run in double precision. 

4. Oscillatory flow at K, = 50, a2 = 6, 6 = 1 

4.1. Validation 

Once the numerical problem has been formulated we must define the appropriate 
computational resolution in order to obtain results which correspond to the physical 
problem. At present we have yet to define the grid stretching parameters a in the 
v-direction, b and x, in the x-direction; and the resolution N,r x N,. 

During several tests, among which the experimental results of Ralph (1986, 1988) 
were reproduced with a version of the same code with a periodic-x boundary condition, 
a value for a of around unity has been found to be appropriate for the present order 
of magnitude of the diffusive term. In what follows we assume a = 1.2. 

The distortion of the x-coordinate depends, in addition to the resolution, on the 
distance up to which the flow is significantly non-uniform. In order to define 
appropriate parameters we performed, with the present physical parameters, some 
short runs (up to t = 5)  with the same resolution 192 x 36 (see below), with b ranging 
from 6 to 20 and xo from 0 to 8. It has been found that the non-uniformity in the flows 
dies out after a distance of about 30 radii from the expansion, and so the pair b = 12, 
x, = 5 is used in the calculation of the oscillatory flow. 

Grid resolution has been checked by performing nine short runs (up to t = 5) ,  using 
the stretching parameters specified above, with N ,  ranging from 96 to 256 and N ,  from 
24 to 50. No significant difference could be found on varying radial resolution in this 
range and N ,  = 32 has been chosen. In the x-direction a resolution N,  = 192 gives 
converged numerical results and will be used throughout the rest of the paper. 

The flow forced by a periodic flow rate, has been found to be periodic in all cases 
presented below. The reference oscillatory case, and the pulsatile case of 96, were run 
for 100 periods revealing that a perfectly steady periodicity is established after an initial 
transient of about 4 periods. The results of all calculations present data extracted at the 
tenth period. 

4.2. Global features 
As the flow accelerates, a vortex sheet separates at the top of the expansion and rolls 
up forming a vortex ring. The vortex has a positive self-induced velocity and moves 
downstream, leaving the expansion. The instantaneous vorticity field is shown in figure 
2 at every eighth of a period. 

The self-induced velocity of the separated vortex ring is strong enough that the ring 
does not move backward during reverse flow and reaches a distance of about 10 radii 
downstream after one period. In the subsequent period the vortex continues its motion 
downstream and weakens so that, when the flow reverses, it is transported a small 
distance backward. Instantaneously the flow is then formed, in principle, by an array 
of vortex rings, weakening downstream, each one being generated in a successive flow 
oscillation; nevertheless, with the present choice of parameters, only two of them are 
of significant intensity while the previous ones have been dissipated by viscosity. 

The presence of the vorticity in the bulk of the flow creates a persistent region of 
opposite vorticity at the wall that does not let the boundary layer follow the same 
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-5 0 5 10 15 20 25 

FIGURE 2. Vorticity contours for S = 1, K, = 50, = 6 from t = 0 every 1/8 of period. Lcvels from 
-410 to 410 in increments of 20. In this and subsequent similar figures positive levels are continuous 
lines, negative arc dashcd. 
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FIGURE 3. Wall shear stress contours in space-time for 8 = I ,  K, = 50, a2 = 6. Levels from - 100 to 
60, increment 5. The zero level is the thick continuous line, positive levels are dashed. Flow rate time 
variation is shown on thc right. 

oscillatory law as in a rectilinear duct (Batchclor 1967), which here can be observed 
only far downstream and upstream. The secondary vorticity at the wall does not 
separate and remains attached, creating a persistent negative wall shear stress. 

Tangential stress at the wall can be computed from the definition of the stress tensor 
Tin cylindrical coordinates (Batchelor 1967). Calling z = T . n  the stress vector, where 
n is the vector normal to the wall, the dimensionless wall shear stress is given by 

1 
TY.(.7i) = 7 a w(x, r = R(x)). 

By analogy, the wall pressure is computed by integrating the pressure gradient along 
the wall as obtained by the Navier-Stokes equation in primitive variables which, in the 
present system of coordinates, leads to 

The development of the shear stress is relevant for the prediction of diseases in blood 
vessels (Pedley 1980). Figure 3 shows the space-time pattern of wall shear stress. On 
the right o l  the picture the time variation of the flow rate is shown for clarity. 

Far from the expansion the shear stress changes sign in the same way as the 
oscillating flow in a rectilinear pipe. At t cs 0.15 the separating vortex induces a 
negative stress at the expansion and at t ;r 0.27 secondary separation initiates a small 
zone of positive stress. The main feature is the trace of the separated vortex which, at 
the wall, marks a band of intense negative friction and extends with relevant intensity 
from separation up to the subsequent period. Overall, negative shear is substantially 
more prevalent than positive because of separation, and locally, can reach high values 
at about 1 to 8 radii from the expansion. 



Unsteady tube J7ow ozw an expansion 97 

2 

0 

-2 

-5 0 5 10 15 20 25 

FIGURE 4. Cycle-dveraged flow lor S = 1, K ,  = 50, a2 = 6 Upper half. streamfunction contours, levels 
from 0 to 6.5, increment 0 5 .  Lower half: velocity profiles, velocity units are rcduced by a factor 0.06 
with rcspect to spatial units 

The flow does not show the development of vortex waves as observed in previous 
two-dimensional simulations in channels with a sudden or gradual expansion (Sobey 
1985; Tutty & Pedley 1993). In symmetric two-dimensional channels the analogy with 
the present results is negated by the symmetry breaking of the flow which occurs at 
Reynolds numbers of about 100 in steady flows (Durst, Pereira & Tropea 1993) and at 
smaller values in unsteady two-dimensional flows (Sobey 1985). A geometrical analogy 
could be drawn with the case of two-dimensional flow in a stepped channel, but the 
careful examination of the vortex wave development given by Tutty & Pedley (1993), 
even though their results are at a higher K, ranging from 100 to 250, shows that these 
form by alternate deflection of the separated vorticity towards the two opposite no-slip 
walls with a fundamental role played by the induced separations, a phenomenon 
impossible in an axisymmetric geometry. Moreover, in two-dimensional flows the wake 
can bend more easily, whereas a resistance to such a curvature is intrinsically present 
in axisymmetric flow because it is accompanied by stretching of the annular vorticity 
and by increase of enstrophy. 

4.3. Cq’c,le-at~evag*.d~o~t~ 

A non-zero value of the flow characteristics averaged over the cycle of zero mean 
indicates the presence of important nonlinear phenomena. This so-called ‘ steady 
streaming’ is generated by the Reynolds stresses associated with the oscillatory shear 
layer (Schlichting 1968 ; Stuart 1963). In the present field the steady streaming extends 
from the inner layer and, by continuity, creates a mean recirculating flow. The steady 
pattern is shown in figure 4 (upper half) where the constant cycle-averaged 
streamfunction curves are plotted. On the lower half of the same picture the steady 
x-velocity profile confirms the single boundary layer structure of the steady streaming 
corresponding to a double vorticity layer structure. Keeping in mind the flow evolution 
shown in figure 2, we can observe that the steady streaming marks the regions in space 
associated with the persistence of the separated vorticity . Nonlinear terms are 
important in the separated parts of the flow, and in figure 4 we can recognize the 
average flow induced by the persistence of the separated vortex ring at .Y z 7, and the 
weaker vortex separated in the previous cycle at x = 18. 

The presence of nonlinearity corresponds, in spectral terms, to the creation of 
additional harmonics superimposed on the fundamental one. The development of a 
second harmonic of frequency twice the fundamental one could be observed in almost 
all the flow field. Higher harmonics at discrete frequencies, multiples of the fundamental 
one, appear significantly just after the expansion. These appear also to be relevant at 
a large distance from the expansion about the mean position of the principal vortex, 
where energy is even larger at multiples than at the fundamental frequency, without 
any cvident difference between odd and even harmonics. A similar behaviour with 
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FIGURE 5 .  Zero-vorticity contour in space-time for S = 1, K ,  = 50, = 6. Arrows specify the 
direction of thc wall limiting velocity; dotted lines indicate the step position; the dash-dot line 
indicates reversal of the flow. Letters denote limiting points and the associated number is their type 
(see text). 

many excited harmonics in the vicinity of the farther vortex has been found in the 
different situation of oscillatory motion about a sphere (Chang & Maxey 1994) but no 
conclusion about similarities can be drawn at this stage. 

4.4. Separation 
Separation of the unsteady boundary layer gives rise to the large-scale vortex structures 
governing the flow development, and the understanding of some processes related to 
this has important implications in understanding and eventually predicting flow 
characteristics. For this reason we hope that a careful observation of the unsteady 
phenomena occurring near the wall can help in progressing this understanding and the 
classification of the unsteady separation mechanics. 

The structure of the unsteady separation can be followed by looking at the critical 
points created at the no-slip wall. Critical points at the wall can be identified at each 
instant by zero limiting velocity, which is equivalent to zero vorticity. By using the 
linear approximation of the limiting velocity field near a critical point we can write 
(Perry & Fairlie 1974) - -  

U 
= A I;]. 

Y 
where I; denotes the distance from the wall and 2 denotes the distance from the critical 
point measured along the wall; the matrix A is given by (see also Perry & Fairlie 1974) 

where r ,  and p ,  are given by equations (18) and (19). The top-left term indicates the 
intensity of the critical point and its sign indicates if it is a separating or a reattaching 
point; the top-right term indicates the tilt of the separating streamline with respect to 
the normal at the wall ; the terms in the second row are a consequence of the continuity 
equation. Since the flow is planar, even if axisymmetric, all critical points are 
separating or reattaching saddles; of greater importance is their unsteady development 
during the oscillatory cycle. 
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FIGURE 6. Streamlines for 8 = 1, K, 50, a* = 6, at t = 6/32,8/32, 11/32 from top to bottom. Levels 
from -7.6 to 20, increment 0.8 with respect to the instantaneous wall value, dashed line represents 
wall level. 

In figure 5 the space-time evolution of the critical points at the wall is identified by 
plotting the zero-vorticity level; the arrows show the direction of the limiting velocity 
at the wall, dotted lines indicate the position of the expansion, and the dash-dot line 
marks the inversion of the mean flow. The letters, from A to P, indicate the position 
in space and time where a pair of saddles appears or disappears; these points are of 
particular relevance, being where separation starts or finishes, and we will call them 
limiting points. They are characterized by zero top-left and bottom-right terms in 
(21) leading to an instantaneously singular matrix A. Two principal types of limiting 
points have been observed, as will be shown below; they are labelled as (1) and (2) in 
figure 5. 

First, let us give a general picture of the separating dynamics as shown in 
figure 5 .  In a uniform tube, the limiting velocity is alternately positive and negative 
along the whole wall (Batchelor 1967; Schlichting 1968). In this axisymmetric case tube 
non-uniformity produces separation of vorticity. This induces a negative limiting 
velocity (A) and a secondary separation associated with positive limiting velocity (B) ; 
then a larger stress, due to the area reduction in reverse flow, results in the persistence 
of negative limiting velocity (0). These are the effects created directly by tube non- 
uniformity; these will then influence the rest of the flow. The separated vorticity 
moving forward because of self-induced velocity retards, with respect to oscillating 
flow in a uniform tube, the formation of positive vorticity a t  the wall underneath it, 
giving rise to limiting point P at the next cycle. The same vorticity, continuing its 
motion downstream, anticipates the formation of negative vorticity (C) and so on 
(M ...). Secondary vorticity enters the flow at I and reattaches at J. Other smooth 
perturbations, like the one leading to the pair E F, may be attributed to different causes 
like the wake of the vortex ring. 

The streamline pattern for the primary and secondary separation after the expansion 
is shown in figure 6. Primary separation, which develops from limiting point A, is 
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FIGURE 7. As figure 6 but at t = 58/64, 63/64, 4/64 from top to bottom. 

typical of separation caused by a pressure gradient, developing as a growing 
recirculation cell. As the intensity of the bubble grows, because of the roll-up of the 
separated vorticity, it induces an opposite pressure gradient at the wall and a secondary 
separation contained inside the primary one appears (limiting point B). Both these 
limiting points can be seen as the appearance of one elliptic point at the wall (limiting 
points A and B) which then enters the flow giving rise to recirculation. This kind of 
limiting point is called type 1. 

During decelerated motion a recirculation cell can progressively disappear. This is 
the case for the annihilation (limiting point 1) of the secondary separation which can 
be interpreted as an inverse type-1 limiting point. More often, in the present results, 
different mechanics can be observed during deceleration motion. A recirculation 
attached to the wall is associated with limiting velocity in the opposite direction to the 
bulk flow; during deceleration and eventually reversal of the main stream the cell 
elongates, because limiting velocity of the same sign will eventually cover the whole 
wall, until it merges with an opposite saddle. In figure 7 we can see this process 
corresponding to the limiting point P. The separated cells, which appeared at J and K, 
elongate and exchange branches with neighbouring cells coming from L and N, then 
all the branches terminate in points M, 0 and P. The limiting point dynamics like that 
shown in figure 7 is classified as type 2. The main feature in this case is that the limiting 
point appears as a hyperbolic point at the wall which then enters the flow (it is worth 
noting, to avoid confusion, that the recirculation, or elliptic point, above the wall in 
figure 7 is not related to the wall limiting dynamics discussed here). This type of 
dynamics is related to the presence of non-uniform vorticity inside the flow ; during 
deceleration vorticity at the wall wants to change sign but this process is also not 
uniform. In figure 7, the formation of positive wall limiting velocity is retarded below 
the vortex, which rotates clockwise. Limiting cases of both limiting points types arise 
when merging occurs with branches coming uniformly from infinity. 
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The a,, term in equation (21) for matrix A is zero at the limiting points. A typical 
type-1 separation (see point A, for example), induced by a positive pressure gradient, 
creates a recirculation cell with a negative shear stress gradient at the separating point 
and a positive one at reattachment. In such a case the limiting point is expected to 
present a positive pressure derivative and a positive second-order derivative of the 
tangential stress. The above result has been confirmed by the present calculation: we 
could see that when the aI2  term is positive then the type-1 points are associated with 
a positive value of aa, , /X  and vice versa for negative values. On the other hand, given 
the sign of uI2  and the sign of 2u l l /X  then limiting points of type 2 correspond to 
opposite signs, revealing the dual nature of the different limiting point. This rule has 
also been confirmed by the results in the following sections. Such a rule may help in 
the development of the analytical treatment of unsteady separation (see, for example, 
the review article by Smith 1986 and references therein; and the recent developments 
by van Dommelen & Cowley 1990; Peridier et a/ .  1991) for planar flows. 

4.5. Pressure losses 
The value of pressure averaged over the pipe section, p(x, t ) ,  is computed from the 
integral form of the momentum equation (Batchelor 1967; Marchi & Rubatta 1981) 
applied to a control volume confined by the tube wall and two tube sections at generic 
positions x1 and x > x,. Dropping the time dependence we can write 

where the four operators on the right-hand side represent pressure variation due to, 
respectively, variation of momentum flux, tangential friction at the wall, normal 
pressure at the wall, and local inertia. They are given by 

Af = -{iff"" 2 u:(x,, r )  r dr - 
RZ(X) 

I 

I 
The time evolution of the pressure jump between the sections at x, = - 10 and 

x = 20 is shown in figure 8 (u). Pressure difference (continuous line) and wall pressure 
difference (dotted) are almost coincident. Dashed lines are the contributions given by 
the different terms in equation (23). The total jump is dominated by the inertial term 
(P,); the evolution is almost sinusoidal and is out of phase with the main stream. 

An estimate of the pressure difference can be obtained by an inviscid analysis: 

p(x) -p(x , )  = - ~ [ R ( ~ ) - ~ - R ( , ~ ~ j - ~ ] ~ f ( t )  ~ f ( r ) ~ - ~ ' n - ' ( s ) d s K , I .  df (24) 
7' at 

The first term on the right-hand side of equation (24) represents the kinetic 
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FIGURE 8. (a) Time evolution of the presswe difference, and (h) distribution along the tube of 
cycle-averaged pressure for S = 1, K ,  = 50, ct2 = 6. 

contribution, and the second term is the inertial contribution. Equation (24) can be 
generalized to the Morison equation (de Bernardinis, Graham & Parker 1981; 
Bearman et al. 1985), 

(25) 
df 
dt P(X) - P ( X J  = - c, q f ( 0  I f(f>l- C ,  K ,  3 

where the coefficients C, and C ,  can be obtained from (24). Actually the estimation 
of the drag coefficient C, by equation (24) is rather poor because the approximation 
neglects dissipative phenomena related to separation. On the other hand the added- 
mass, or inertial term derives from bulk flow unsteadiness and equation (24) can give 
a rather good first approximation for C,. A least-squares estimation of the coefficients 
in equation (25), with the data of figure 8, gives C, = 0.51 and C, = 16.8, whereas the 
inviscid estimate gives, respectively, - 0.47 and 14.6. 

The cycle-averaged pressure distribution along the tube is plotted in figure 8 (b). The 
mean pressure difference is non-zero, as a consequence of the steady streaming. It is 
mainly due to wall pressure at the expansion. though some recovery is given by the 
contribution of the shear stress due to the recirculation seen in figure 4. 

Formula (25) fails in representing the steady streaming contribution ; however this 
is one order of magnitude smaller than the other contributions and has little influence 
in the case treated here and in the next sections. Approximation (25) represents the 
actual pressure variation with a relative error (root mean square of the error 
normahed with the root mean square of the pressure loss) below 15 YO. This estimate 
can be improved to 8% by subtracting the mean value. Notice that the drag term is 
substantially less important than the inertial term and the time variation of the pressure 
drop could be predicted from the inviscid estimate of the inertial term only, giving a 
relative error of 28 %. 
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FIGURE 9. Cycle-averaged streamlines: (a) S = 0.25 (upper half) and 2 (lower half). Kc = 50, a2 = 6: 
(b) 8 = 1, K, = 15 (upper half) and 75 (lower half), a’ = 6; (c) for 6 = 1, K,  = 50, cc2 = 3 (upper half) 
and 12 (lower half). Levels from - 1.25 to 7, increment 5 .  

5. Variation of flow parameters 
5.1. Expansion value 6 

In analogy with the finding by Tutty & Pedley (1993), the effect of decreasing the 
expansion is to decrease the intensity of the shed vortex rings. At values S < 1, the shcd 
vortex travels a small distance beyond the duct enlargement and its motion is slowly 
backward during the reverse phase of the flow, indicating a smaller value of the self- 
induced velocity. A signature of the flow dependence on the parameter 6 can be 
obtained by looking at the cycle-averaged streamlines. These are plotted in figure 9(a) ,  
at S = 0.25 and S = 2 in the upper half and lower half of the tube, respectively. Small 
S creates a weak perturbation to the flow in the vicinity of the step which tends to zero 
on decreasing the step further. On the other hand a large value of 6 creates a strong 
separated vortex which, as shown partially in figure 9(a) ,  survives for more than two 
flow cycles. However the global behaviour does not change qualitatively from the 
reference case with S = 1. A typical mean position of the separated vortex can be 
extrapolated from the position of the maximum value of the averaged streamfunction, 
as shown in figure 9 ( a ) ;  such an estimation gives x = 0.8, 3.6, 7.1, 8.8 for S = 0.25, 0.5, 
1, 2, rcspectively. The structure of separation analysed in the previous section is 
maintained even through secondary separation does not occur for S = 0.5. The 
unsteady pressure drop can still be expressed by the Morison equation (25); the growth 
of the inertial contribution with 6 is in agreement with the inviscid estimate (24) which 
give C,,l ranging from about 23 to 11 with growing expansion height. 

5.2. Keulegan-Carpenter number K, 

The Keulegan-Carpenter number represents the ratio between the length of the free- 
stream oscillation and the reference length scale. In this view and in dimensionless 
terms, K, can be interpreted as a longitudinal length scale of flow motion. The primary 
effect of its variation is to elongate, or shorten, the influence of non-uniformity in the 
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FIGURE 10. Vorticity contours for 8 = 1, K,  = 50, 2 = 12 from t = 1/8 every 1 /4 period. 
Levels from -510 to 510. increment 20. 

tube. This can be seen in figure 9(b), where the steady streamlines are shown for 
K, = 15 (upper half of the tube) and K, = 75 (lower half). The elongation of the wake 
grows approximately linearly with K,, though the limitation in the range of variation 
means that we cannot consider such a conclusion as definitive. 

For large enough values of K,, larger than the small dimensionless length scales given 
by the diffusion length and expansion size, there is no other longitudinal length scale 
which can compete with the wake development. Consequently the flow is expected to 
extend, in a fashion similarity, with no limitation. This is in agreement with previous 
results for flow over an expansion (Sobey 1985; Tutty & Pedley 1993). The results are 
different, as expected, when an additional length scale such as the wavelength of a 
periodic wall non-uniformity, is present. This is the case of flow over a rippled bed 
(Blondeaux & Vittori 1991 a) and flow in a wavy walled tube (Ralph 1986) who found 
a resonating value of the S trouhal number corresponding to oscillations comparable 
with wall wavelength. In that case the interaction of wakes shed from neighbouring 
crests can lead to complex, possibly chaotic (Blondeaux & Vittori 1991b) vortex 
dynamics, whereas in the present case separated vortices do not come close enough to 
develop any intense interaction. 

5.3. Stokes parameter a2 

The parameter a' represents the inverse, squared, of the thickness of the boundary 
layer with respect to the inlet radius. In figure 9(c) steady streamlines are shown for 
a2 = 3 and a' = 12. Small values of a2 correspond to a viscous smooth separated 
vortex. Larger values correspond to a weaker diffusive effect and, as a consequence, 
induce a thinner boundary layer and separated vortex sheet and longer-living vortices; 
a double boundary layer structure is clearly seen at the foot of the expansion for 
a2 = 12 (this had already appeared for az = 9) reflecting the smaller thickness of the 
boundary layer. In figure 10 the vorticity field is shown, for az = 12, at four equispaced 
instants. At the end of the flow acceleration the thin vortex sheet rolls up into one 
compact vortex. This induces a relatively intense secondary separation which, trying to 
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FIGURE 11. Wall flow for S = 1, K, = 50, a2 = 12. (a) Streamlines at t = 13/32, levels from -7.6 to 
30, increment 0.8 with respect to the instantaneous wall value; dashed line represents wall level. (b)  
Wall shear stress contours in space-time, levels from - 100 to 60, increment 5.  

separate itself, is able to isolate the vortex from the remainder of the separating 
vorticity which organizes into another weaker patch following the primary vortex. 

The separation dynamics is globally similar to the reference case of 94 with a 
noticeable difference in the secondary separation. This is summarized in figure 11 
where, upper picture, instantaneous streamlines at approximately the maximum 
growth of secondary separation and, lower picture, wall shear stress spacetime 
development are reported. Secondary separation penetrates inside the flow and creates 
two primary recirculating cells. The wall stress evolution shows that secondary 
separation is not extinguished during flow reversal but maintains a positive shear at the 
foot of the expansion until the appearance of primary separation in the next flow cycle. 
It can also be noted that the intensity of the secondary vorticity at the wall presents a 
bifurcation at flow reversal, indicating a possible tertiary separation at larger a2 values. 

6. Pulsatile flow 
In this section we analyse the flow arising from a time law variation of the fluid 

volume rate inside the tube of the same type as those observed in large arteries of 
human circulation systems. The analysis is along the same lines as for the previous 
cases and the main differences with the case of purely sinusoidal unsteady flow rate are 
explored. Flow parameters are the same as in 94. 

Approximating several actual Doppler measurements in the human carotid artery 
we found that the function 

.f i t) = 0.4355+0.05cos(2nt)+0.25 sin(2n:t)-0.13 cos(4nt) 
+0.13 sin (47tt)-00.10 cos(67tt)-0.02 sin ( h i )  
-0.01 cos (87ct)-0.03 sin (Snt) 
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FIGURF. 12. Vorticity contourc in pulsatile flow for d = 1 ,  Kc = 50, z2 = 6 from t = 0 
every 1 /8 period. Levels from - 155 to 335.  increment 10. 

represents a simple good approximation of the real flow time evolution. Law (26) does 
not include flow reversal and is composed, in each period, of an impulsive motion with 
strong acceleration and deceleration (systole) followed by a slowly decelerating flow. 
It reaches the maximum value of unity at about t = 0.18, and the mean values is 0.4355. 

The presence of a positive mean flow rate implies the necessity to extend the 
computational domain further downstream. Several tests varying the parameters b 
and x,, and grid size N ,  have been performed in analogy with $4. It could be verified 
that a better representation of the flow to far downstream is achieved assuming b = 16 
and x,, = 8 while keeping the other parameters unchanged. 

The vorticity field during one pulsation is shown in figure 12; pictures are plotted 
every eighth of a period. A vorticity wake is created during the impulsive phase which 
rolls up into a well-defined vortex structure at the end of the rapid deceleration phase, 
as can be observed in the fourth frame of figure 12. The separated vortex ring moves 
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FIGURE 13. Wall shear stress contours in space-timc in pulsatile flow for 8 = 1, K, = 50, a' = 6. 
Levels from - 100 to 60, increment 5. Flow rate time variation is shown on the right. 
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FIGURE 14. Streamlines (above) and vorticity (below) in pulsatile flow for S = 1. K ,  = S O ,  a' = 6, 
at (a) t = 1/32, ( b )  16/32. Streamfunction levels from -7.6 to 20, increment 0.8 with respect to 
the instantaneous wall value; dashed line represents wall level; vorticity levels from k2 with 
increment 10. 

downstream because of the self-induced motion and the positive flow rate. The 
sequential separation of a vortex ring every time cycle results in a succession of 
vortices, weakening downstream, which are spaced further apart than in the purely 
oscillatory case. With the present choice of physical parameters, the vortex propagates 
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downstream up to a distance of about 40 inlet radii. As observed in the oscillatory case, 
a secondary vorticity layer is maintained at the wall underneath the primary vortex. 
The spacetime development of the wall shear stress is shown in figure 13. As the flow 
is always directed toward the larger portion of the tube the dominance of positive wall 
shear is expected and the only noticeable negative shear is that induced below the 
primary vortex. Significant positive shear can be observed during all the impulsive 
phase, decreasing to about zero throughout the phase of slow deceleration; similar 
behaviour at the wall can be seen in the results for pulsatile two-dimensional flow 
beyond constriction presented by Tutty (1 992). 

The cycle-averaged flow is qualitatively similar to what is obtained in steady flow 
even though the recirculation cell is slightly more intense and its elongation downstream 
increases from about 20 to 24 units. The separation features are similar to the 
oscillatory flow (see figure 13) with analogous appearances of the principal limiting 
points. The extinguishing of the negative shear below the major vortex is shown in 
figure 14(a), where streamlines (above) and vorticity contours (below) correspond to 
t = 0.03 1 25. Negative vorticity is lifted because acceleration encourages positive shear 
to develop along the wall giving rise to a type-2 limiting point disappearance (compare 
with figure 7). Secondary separation appears at the foot of the expansion during 
deceleration with a type-1 limiting point at t z 0.39. The recirculating cell connects with 
the positive limiting velocity coming from infinitely far upstream at a type-2 limiting 
point, and is recreated with an inverse type-2 limiting point, reaching the stage shown 
on figure 14(b). 

The pressure difference through the expansion is still dominated by the inertial effect. 
The difference between wall pressure and mean pressure is below 1 % here, due to the 
dominance of longitudinal velocity. On average, in a cycle, the distribution of pressure 
along the tube is very similar to what is obtained in steady flow with a slightly larger 
recovery and final smaller pressure loss. The Morison equation (25) gives a very good 
representation of the temporal evolution of the pressure drop with coefficients 
C, = 0.13 and C, = 16 (error 6%); a prediction of pressure drop from the inertial 
term of the inviscid estimate (24) results in an approximation with relative error below 
12 %. 

7. Conclusions 
Unsteady flow in a circular channel with a smooth expansion has been analysed with 

the approximation of axial symmetry of the flow. The major large-scale feature in 
oscillatory flow is the formation of a train of vortex rings, each formed during one 
oscillation cycle. Variation of the step height and of the Keulegan-Carpenter number 
only influences the strength and the elongation of the separated vorticity without 
modification of the general picture. Variation of the Stokes number has shown that a 
vorticity patch with two maxima, or eventually a pair of vortices, can separate each 
cycle. Steady streaming, revealing the nonlinear character of separated flows, is found 
in all cases with a single boundary layer structure; a double layer structure is found at 
larger Stokes number, corresponding to the double maxima separated vortex. Most of 
the experimental and numerical results for the similar problem of oscillatory flow after 
a step have been developed in a two-dimensional flow model. The development of 
vortex waves observed in several studies and in a different geometry (Sobey 1985 ; Tutty 
1992; Tutty & Pedley 1993) could not be observed in axisymmetric dynamics because 
they are related to the presence of two facing no-slip walls (Tutty & Pedley 1993). 
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Moreover, radial motion of vorticity is made more difficult in axisymmetric flows 
because of its association with the stretching of circular vortex lines. 

In unsteady flows with a sequence of accelerated and decelerated, eventually 
reversing, flow, the definition of separating and reattaching points can sometimes be 
misleading because these definitions intrinsically refer to the direction of the flow above 
the wall. A space-time view of the limiting flow at the wall has revealed some features 
of the separating dynamics. Two dual dynamics for the appearance and disappearance 
of pairs of critical points at the wall could be recognized by the present calculations. 
The major feature, common in all calculations, is the development of a negative wall 
shear stress region induced by the separated vortex ring and moving along with it in 
the expanded portion of the tube. 

The difference between the values of the pressure before and after the expansion is 
dominated by the inertial contribution. The absence of a longitudinal length scale, 
which could compete with the oscillation length, reduces the possibility of an 
interaction between vortices of comparable intensity and the consequent cascade to 
complex dynamics as observed in a wavy-walled tube (Ralph 1986, 1988). For this 
reason the time development of pressure differences is substantially represented by the 
flow rate time derivative, and can be predicted to a good approximation by the inertial 
contribution of an inviscid flow analysis. Nonlinearity appears more significant for 
increasing values of the Stokes parameter, indicating a possible source of complex 
dynamics. At these large values the axisymmetric flow is presumably unstable and the 
present results can be a reference starting point for three-dimensional flow analysis. 

This work was stimulated by the need to understand the fluid dynamical phenomena 
corresponding to post-surgical carotid conditions. Even though the flow at this site is 
certainly three-dimensional due to bifurcation of the artery’s wall a few radii after the 
expansion, and the elasticity of the walls can have a fundamental influence in the flow 
development, the flow associated with a pulsatile fluid volume rate has been considered 
in order to explore the findings which can be obtained with the present idealized model. 
The qualitative flow development is substantially similar to the oscillatory case even 
though quantitative differences, like the spacing between successive separated vortices, 
are relevant. Pressure losses are, on average, smaller than in steady flows but 
instantaneous peaks can be more than one order of magnitude larger. These can be 
predicted to a good approximation (error around 10 YO) by the inviscid estimate of the 
inertial term. 

The development of shear stress at the wall, and its space-time pattern, is of 
particular relevance for the localization and prediction of arterial diseases. During the 
reverse phase of oscillatory flow negative wall shear stress is distributed along the 
whole tube wall with one maximum at the top of the expansion and another one at the 
wall which are induced by the separated vortex moving inside the channel. In the 
pulsatile case intense negative shear is almost absent during the whole period apart 
from at the wall in the neighbourhood of the main vortex. Its space-time development 
indicates that a relevant portion of the tube, from the expansion to about 20 inlet radii 
downstream, is subjected to an oscillatory stress even in pulsatile flow, with large 
negative peaks. This phenomenon differs from the vortex waves observed past a two- 
dimensional expansion, but appears to have some generality in axisymmetric geometry. 

The author acknowledges the use of the computational facilities of PIN at Prato 
(teaching and scientific services for the University of Firenze). 
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